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Abstract. The aim IS to develop in as simple and elementary a fashion as possible the quantum 
dynamics of gravitating particles in a strongly curved classical background geometry. This 
type of theory is important when the radius of curvature of the universe is less than the 
Compton wavelength of the particles. Path integrals provide the simplest entry to quantum 
gravidynamics, and part I considers path integrals without spin. Spin will be introduced in 
part 11, and perturbation expansions in part 111. 

Path integrals are convolutions of kernels for many small intervals: the curved space 
kernel for a small interval is found by suitably generalizing the free-particle flat space kernel. 
The structure of a relativistic path integral is very different from that of a non-relativistic 
path integral, and is illustrated by describing how to evaluate a path integral-at least in 
principle-by a crude Monte Carlo method. 

Path integrals for several particles involve an action principle, which is expressed in 
terms of particle paths using an integral formulation of Mach’s principle. When particles 
approach to within their gravitational radius, path integrals and even the space-time 
continuum become meaningless. 

1. Quantum theories of gravitation in perspective 

There is not just one quantum theory of gravitation, but at least three, of different levels 
of complexity and sophistication, and appropriate to  different physical situations. This 
series of papers aims to develop the simplest level of theory, in as simple and elementary 
a fashion as possible. This level of theory, which I call quantum gravidynamics, describes 
the interactions of gravitating particles and gravitons in a classical background geometry. 
Because only the particles and gravitons are quantized, and not the background 
geometry, theinteractions areessentially linear. Thereis astronganalogy withelementary 
quantum electrodynamics. Quantum gravidynamics becomes important during the 
Compton era, tu  5 s, when the radius of curvature of the universe becomes less 
than the Compton wavelength of typical particles. 

Most efforts to quantize gravitation are directed to the much more difficult problem 
of the non-linear quantization of the background geometry, which might be called 
quantum geometrodynamics (see, for example, reviews by de Witt 1972, and by Brill and 
Gowdy 1970). Quantum geometrodynamics becomes important during the Planck 
era, tu 6 10-44s, when the radius of curvature of the universe becomes less than the 
Planck length (Gh/c3)’;’. There are then violent quantum fluctuations in the geometry, 
leading to  topological changes ; wormholes, geons, and other exotic objects appear. 

t Present address : CRESS, York University, Downsview, Ontario, Canada. 
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Quantum gravidynamics I 17 

Quantum geometrodynamics still assumes that space-time is a continuum, but in 
the Schwarschild era, tu 5 10-80s, particles are squeezed together so closely that no 
test particle can make meaningful measurements of position. Then we need an even more 
profound theory, perhaps along the lines suggested by Penrose (1971, 1973), who tries 
‘to get rid of the continuum and build up physical theory from discreteness’. 

2. Path integrals provide the most direct entry to quantum gravidynamics 

The Compton era occupies about 20 decades of cosmic time. The background gravita- 
tional field is strong enough to create particle-antiparticle pairs (Audretsch 1973). C P  
violating reactions may produce a slight excess of particles over antiparticles (Kuzmin 
1970), just sufficient to account for the present baryon-photon ratio. If the universe was 
homogenized during the Compton era, then statistical density fluctuations would have 
grown to about the right size to create galaxies (Clutton-Brock 1974). The initial condi- 
tions of the universe seem to be laid down during the Compton era. 

The physics of the Compton era will be exceedingly complex and we need to use the 
simplest possible formalism in order to cope with the complex physics. 

Now the central idea of Einstein’s theory is one of beautiful simplicity. The gravita- 
tional field is identified with the curvature of space-time, and the inertial paths of 
particles are identified with geodesics. We might ask : how does a particle ‘know’ which 
path is a geodesic? Feynman (1948) gives an answer which is both astonishing and 
simple: the particle does nor know. Instead, it travels over all possible paths. Each 
compatible path contributes to a process an amplitude e’’ where S is the action along 
the path. The probability amplitude for the process is the integral of eis over all 
compatible paths-a path integral. 

Surely the simplest and most direct route to quantum gravidynamics is obtained by 
fusing these two beautiful ideas. So we shall in this series of papers study the idea of path 
integrals in curved space-time. To make things as clear as possible, we shall start with 
path integrals for spinless particles, and postpone the study of spin until part 11. 

The ultimate goal of quantum theory is to find transition amplitudes for processes. 
and so we wish to express transition amplitudes as path integrals. One can think of a 
path integral as a way of building up the amplitude for a complex process out of the 
amplitudes for many simple processes. The simplest process is for a particle to go from 
one point to another neighbouring point, and this is the kernel for a small interval which 
we find in Q 3. We use this kernel in Q 4 to build up transition amplitudes in the form of 
path integrals, and show in Q 5 how they might be evaluated by Monte Carlo methods. 
Quantum gravidynamics proper begins when particles interact, and so we derive in 
Q 6 an action integral for mutually gravitating particles. 

One advantage of this approach is that it exposes with particular clarity the limits of 
its validity, as we see in Q 7. The breakdown of the space-time continuum, which occurs 
in the Schwarzschild era, is reflected in the inability to form a path integral from the 
action for strongly gravitating particles. 

3. An approximate kernel for small intervals 

The amplitude for a particle to go from x’ to x” is the kernel K(x”,  x’). Now we can find 
the kernel for a free particle in flat space-time quite easily. Over a small interval, the 
effect of curvature is small, and so we can find an approximate kernel in curved space-time 
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by generalizing the flat-space kernel. The approximation will be good if the interval is 
small. The kernel for a large interval is found as a convolution of kernels for many small 
intervals: this is a path integral. 

The kernel K(x”, x‘) relates the wavefunction $(x”) at x” to the wavefunction $(x‘) 
on a 3-surface V’. In relativistic quantum mechanics the 3-surface V‘ completely 
encloses the point x” : 

$(x”) = K(x”, x’)Q‘$(x’) dV’. (3.1) 5 
We shall call Q the path operator, and it contains the specifically quantum part of the 
dynamics. For a Dirac particle, Q will be a spinor, while K will remain a scalar. For a 
free Klein-Gordon particle, Q contains Kirchoff’s modification of Huygens’ principle 

Q = (;ik-%k)Nk, (3.2) 
where ; ik  and a’, indicate differentiation to the right and left, and N k  is a vector orthogonal 
to the invariant element of 3-surface dV such that 

Nk dV = ( -  g ) ’ ” C k l m r r  dx’ dx“ dx”. (3.3) 
Because V’ encloses x”, we can use Gauss’ theorem to transform the 3-surface integral 
(3.1) into an integral over the 4-content C‘ enclosed by V ’ :  

$(x”) = 1 Dk’[K(x”, x’)(& - 8’’)$(xf)] dC‘, (3.4) 

where D‘ indicates covariant differentiation with respect to x’. Now $ obeys the free 
particle Klein-Gordon equation 

( - Dkd, + m2)$ = 0, (3.5) 
and so we may put (3.4) into the form 

$(x”) = [( - Dk‘d; + m2)K(x”, x’)]$(x’) dC’ I 
This yields immediately the differential equation that the kernel must obey 

(-Dk”a; + m2)K(x”, x’) = Y(x”, x’), (3.7) 
where Y(x”, x’) is the invariant identity kernel. 

In the presence of an electromagnetic potential 4, I) must obey the equation 

[ - (Dk- ie$k)(dk- iec$k)+m2]$ = 0, (3.8) 
and the path operator Q must be modified to 

Q = [ ( ; i k - i e ~ k ) - ( ~ k + i e 4 k ) ] N k  

in order that the kernel should obey the differential equation 
(3.9) 

[ - (Dk’ + ie4k‘)(d; + ie&) +mZ]K(x”, x’) = Y(x”, x’). (3.10) 
In flat space-time the free-particle differential equation (3.7) is easily solved as a 

Fourier integral 

(3.11) 
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The integration over po  is along the Feynman contour, which ensures that positive 
energies are propagated into the future, and negative energies into the past (Feynman 
1949). The fact that only the appropriate pole of po contributes means that the integra- 
tion is over one sheet of the momentum surface 

n(p) f b p a p b + m 2  = 0. (3.12) 

When x ” - x ’  is future time-like or null, the positive energy sheet must be used; when 
X I ’  - x’ is past time-like or null, the negative energy sheet must be used ; when x” - x’ is 
space-like, either sheet may be used. Thus we can write the element of momentum 
surface in the alternative forms 

(3.134 

or 

(3.1 36) 1 
dR(p) = -U[ - P ~ ( X ”  - X ’ ) ~ ] ~ [ Q ( P ) ]  d4p, 

(2.13 

where U(. . .) is the unit step function and 6(. . .) the Dirac delta function. 
While the flat-space kernel (3.1 1) is exact, the curved-space analogue can only be an 

approximation good for small intervals. The reason is connected with the impossibility 
of covering a region in curved space-time with a field of parallel momentum vectors. 
Thus, we cannot construct a momentum space over a region, but at most along a single 
curve-in our case, the geodesic joining x” and x’. The kernel K ( x ” ,  x’) is, however, a 
sum over all paths joining X I ’  and x’. If we take the momentum vector p k  by parallel 
transport from x’ to x” along a non-geodesic path, it will not in general be parallel at x” 
to the momentum vector transported along the geodesic. The deviation from parallelism 
is proportional to the area between the two paths, and so is of the second order in the 
interval. We may expect the error of the approximate kernel, which is based only on 
the geodesic path, to be also of the second order in the interval. 

The momentum vector can be defined along the whole geodesic by parallel transport, 
but its coordinates must be defined by reference to a single point. So what might seem 
the natural curved-space generalization of the momentum surface, 

n(p, x )  fb(x)papb+m2 = 07 (3.14) 

is in fact very inconvenient because of its dependence on position. So we shall work in 
terms of the ‘mechanical momentum’ 4, which is defined as that function of the canonical 
momentum p and position x which makes the momentum surface take the simple form 

n(4) qa04a4s + m2 = 0. (3.15) 

For a free particle in curved space-time, the components 4.: are just the tetrad com- 
ponents of the canonical momentum pk : 

401 = A t ( x ) p k 3  P k  = n%x)4a.  (3.16) 

For a charged particle in an electromagnetic potential $, the mechanical momentum is 
given by 

4 a  = A b k - e $ k ) ,  P k  = e$k * (3.17) 
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As an aside, we notice that Hamilton’s principle 

6s = 6 PkdXk = 0 subject to  Q(p,  x) = 0, (3.18) I: 
can be expressed in the alternative form 

X” 

6s = 6 Jx, pk(q, X) dXk = 0 subject to Q(q)  = 0, (3.19) 

which leads to equations of motion for 4 and x. 

be replaced by the integral 
In curved space-time, the expression pk(x” - x ’ ) ~  has no invariant meaning, and must 

(3.20) 

which is the action for the particle to go from x’ to x” with momentum q. The coinponents 
of q at an arbitrary position x must be defined by parallel transport from some reference 
point xq, so 

(3.21) 

where g‘(xq, x ) ~  is the parallel propagator (Synge 1960). Provided xq is on the geodesic, 
the momentum (3.21) and hence the action (3.20) is independent of where on the geodesic 
xq lies. The integral (3.20) has then a simple geometrical interpretation: it is the scalar 
product of qz with the vector T“ = T“(x,; x” t x’) tangent at xq to the geodesic and of 
magnitude equal to the invariant measure along the geodesic from x’ to  x”. Thus, if U 
is an affine parameter 

Pk(q, x, = qaAt(xq)gu(xq 9 x)k = q&a(xq, x)k 1 

s( x” x’) = qaT”(xq; x” t x’) 

= q&(x,)(u” - U’) - ( :k)q (3.22) 

When xq is placed at x’ or x”, T u  may be expressed in terms of the derivative of the world 
function W(x”. x’) defined by Synge (1960) as 

1 dx” dxb 
2 du du 

W(X”, x’) = -(U”- U’) gob(X)- - du. 

Since 

WZ(X”, a’) = P(x“)d;W(x”, x’) 

and 

W(x”, x’)” = P(X’)2”X”, x’) 

(3.23) 

(3.24) 

(3.25) 
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we have the expressions 

s( X’‘ ; x’) = qh)WQ(x”, x’), S (  ”’ ”’) = - W(x”, x’)”qi, (3.26) 

which are useful when we wish to find the derivatives of the action. 
To summarize, the approximate kernel for a small interval in curved space-time is 

where dO(q) is the element of momentum surface : 

(3.27) 

(3.28) 

which lies on the positive energy sheet when x” t x’ is future time-like or null, on the 
negative energy sheet when x” c x’ is past time-like or null, and on either sheet when 
x” + x’ is space-like. 

The curved-space kernel (3.27) seems to me to be the simplest covariant generalization 
of the flat-space kernel, but it is not the only possible generalization. The reader may feel 
that the particular choice (3.27) is in need of further justification. 

The real justification for an approximation lies in an error estimate. It is more 
economical to postpone the discussion of errors to part 111, where we can treat the 
Klein-Gordon and Dirac kernels at the same time. We shall show that the error is of 
the second order in the interval, which is sufficiently small for the kernel to be used in a 
path integral. 

4. Transition amplitudes as path integrals 

The transition amplitude to go from a state t+bI defined on a 3-surface 
defined on a 3-surface V, is 

to a state I//, 

The kernel (3.27) for a small interval is just eis integrated over the momentum surface. 
The kernel for a large interval is a convolution of kernels for many small intervals, and 
should therefore be eis integrated over all paths in both momentum and coordinate 
space. We aim therefore to express the transition amplitude as a path integral 

TFI = I $,Q(path)ll/, exp[iS(VF + path e y)] d(path). 

To see how to do this, consider the simple path 

x1 + x3 x5 

4 2  + 44 
{path) = 

where the particle goes from x5 to x j  with momentum q4 and from x3 to x1 with 
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= sss exp[iS( x1 "')IQ3 exp[iS( x3 'j] dQ2 dV3 do,. (4.4) 

Now identify xF with x1 and x, with x5,  and substitute (4.4) into (4.1) to obtain 

Now allow the path operators to operate on the exponentials, and obtain 

We can simplify (4.6) somewhat if we use 

(4.6b) 

(4 .6~)  

(4.74 

(4.7b) 

(4.8a) 

(4.8b) 

(4 .8~)  

The approximation (4.8) is of the same order as that of the kernel, and so it is just as good 
to use (4.8) as to use the exact expression (4.6). Moreover, in an electromagnetic potential 
(4.6) must be modified, but the approximation (4.8) remains valid without modification. 

When the path operators are in the form (4.6) or (4.8), we can separate them from the 
exponentials, and write the transition amplitude in the form 

~ F I  = J . .  . ~JF(XJQIQ~Q,IC~I(X~) 

xexp [' IS ( x3 "31 dV, dQz dV3 d!&dV5. 
+ 44 

(4.9) 
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This can be generalized to an N-step path integral in the form (4.2) provided we identify 

(4.10) 

(4.1 1) 

where Q3 . . . Q2N- take the form (4.6b) or (4.8b), and Q1 and QtN+ take the form (4.6~1) 
and (4.6~) or (4.8a) and (4 .8~) .  

In order to use this recipe for transition amplitudes, we have to know how to construct 
wavefunctions corresponding to physical states of definite energy (k) and 
momentum. This is complicated by our inability to construct fields of parallel momentum 
vectors, so that there is no curved space analogue of the momentum eigenfunction 
$ p  = exp(ipkxk). Fortunately, we do not need to define the wavefunction over all 
space-time: it is sufficient to define the wavefunction, together with its derivative, on a 
3-surface (6  for tjI and VF for tjF). 

One way of constructing a wavefunction $ on a 3-surface V is to start with a 
momentum p at a point X in V, and to use the world function W(x, X) to define that part 
of the momentum field Ax) which lies in the 3-surface V Thus we construct a phase 
function 

S(x) = - W(x, (4.12) 

and put the wavefunction on the 3-surface equal to 

Q(Path) = QlQ3. .  * Q ~ N +  1 3  

d(path) = dVl d o 2  dV3 dR4.. . do2, dl/zN+ 1 ,  

and 

$(x; p) = eis = exp[ - iW(x, ~ ) ~ p ' ] .  

aks(x) = - wk(x, T)I$ = gk(x, z)l$ + O(A2), 

(4.13) 

The motivation is that 
(4.14) 

so the gradient of S(x) is nearly equal to the momentum p taken by parallel transport 
from X to x. Nearly, but not exactly, for 

(4.15) 
so that akS does not correspond to a momentum vector of constant mass. However, 
while IC/ = eis gives the value of the wavefunction lying on the 3-surface V,  its derivative 
normal to the 3-surface can be assigned independently. So we take the part of the 
momentum lying in the 3-surface Vto be 

(4.16) 

akSakS + m2 = O(A2), 

p?,(x) = (gk' + NkN')d,S, 
where N k  is the unit normal to V, and the part of the momentum normal to V to be 

(4.1 7) k 1 112 p l ( x )  = * (m2 +gk$IIpII) . 

The derivative of the wavefunction normal to V is taken to be 

Nkdk$(X, p) = ipl(x)$(x, p). (4.18) 

We have so far ignored the possibility that geodesics may start to cross, so that there is no 
longer a unique geodesic joining two points, and the world function is no longer well 
defined. We can avoid this trouble by forming a wave packet of limited spatial extent as 
an integral over the part of p lying in the 3-surface V :  

(4.19) 
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This is a perfectly well defined procedure for constructing wavefunctions, but it is 
not obvious what the physical interpretation should be. One might be tempted to 
think that $(x; j) represents the state of a particle which, if it crossed Vat x, would have 
momentum p(x).  But a little reflection will convince one that no measurement could 
verify-or falsify-such an interpretation. 

In principle the way to interpret wavefunctions was suggested by Feynman in his 
1948 paper: one uses a path integral to calculate the amplitudes of the results of well 
defined measurements. Thus one can measure the momentum of a charged particle 
by examining the curvature of its track in a magnetic field. To predict the results of such 
a measurement. one calculates a path integral with 'gates' which define the track. 

To work out that idea in any detail would be a major research project in its own right. 

5. Monte Carlo evaluation of path integrals 

Each 3-surface V2n+l in the path completely encloses the previous point x ~ , , - ~ .  Each 
step xZn+ c x2,- must be small, so that the kernel K(x2,,+ 1, x2,- 1) can be a good 
approximation; therefore each 3-surface V2,+ must be small. This gives a relativistic 
path integral a very different structure from a non-relativistic path integral, where the 
3-surfaces are infinite space-like hypersurfaces, and successive intervals may be arbitrarily 
large. The easiest way to visualize the structure of a relativistic path integral is to 
imagine the way in which it might be evaluated by a crude Monte Carlo method. 

The basic idea of the Monte Carlo method is to replace an integral by a sample 
average. We generate a pseudo-random sequence of paths of the type 

where as we shall see even the number of steps N is a random variate. The generating 
process picks points x2,+ to lie in dV2,,+ with probability P(dV2,+ 1), and momenta 
q2, to lie in dQ2, with probability P(dn,,). Each path is assigned a weight 

The transition amplitude is then estimated by the sample average 

?FI = Nia:h {W(path)$FQ(path)$I exp[iS(VF path I:)]}. (5.3) 
paths 

To generate the paths, we start with the two 3-surfaces V, and I: with I: completely 
enclosing V,, as in figure 1. 

Figure 1. 

We choose the first point x1 on dVl in V, = V, with probability P(dVl). Then we 
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construct a small 3-surface V3 completely enclosing x l .  Then we choose a momentum 
q2 on do,  with probability P(dR,), and a point x3 on dV3 in V, with probability P(dV3). 
We arrive at the situation in figure 2. 

At each step, we construct a small 3-surface V,,, enclosing the previous point xZn- 
We choose a momentum q2, on dR,, with probability P(dR,,) and a point cx2n+l  on 
dVzn+l with probability P(dV,,+ Then we ask whether xZn+ lies outside the 3-surface 
V,: if it does, the path is terminated, as in figure 3. 

Figure 3. 

We can take x, as the point at which the geodesic joining the two la.. points crosses the 
3-surface V,, and we can then have to find P(dV,)/dV,. Alternatively, we can identify 
xI with the last point selected, which amounts to a slight redefinition of V,. 

The crude Monte Carlo method we have described is purely illustrative. To make a 
reasonably efficient computational procedure, we would have to give great attention 
to methods of variance reduction, such as importance sampling correlated paths, 
Russian roulette and splitting, etc. 

6. Mutually gravitating particles 

The path operator Q contains the quantum part of the dynamics. If there are no 
specifically quantum forces-spin dependent forces, for example-then the path operator 
for two particles is just the outer product of the two path operators for the individual 
particles : 

(6.1) 
It is quite obvious that, since baryon interactions are strongly spin dependent, (6.1) 
would not be valid for a path integral of two baryons. For the present we are concerned 
with gravitational theory. There should be no quantum contributions to the gravita- 
tional interaction, so (6.1) should be valid for particles interacting primarily via their 
mutual gravitational field. 

The action for two independent particles is just the sum of the actions for the two 
separate particles : 

path of 
Q(A and B) = Q(%W Q(!,fateh). 
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The tetrad at A will be altered by the gravitational field at A due to particle B, and vice 
versa. We want an expression for the change in the tetrad in terms of the particle paths. 
We can find such an expression using the formulation of Mach's principle pioneered by 
Lynden-Bell(1967), and elaborated by Sciama et a1 (1969). This form of Mach's principle 
expresses the metric tensor as an integral over the energy momentum tensor : 

gab(X) J Gab(x, y)klTklb) dC(y). (6.3) 

The bitensor Gab(x, y)kl is the Green function of the differential equation 

m 4 a ~  - 2R,?bd4,d = 0, 

4$b-&!la = 0. (6.5) 

(6.4) 
subject to the gauge condition 

The Green function depends implicitly on the metric, and so (6.3) is a non-linear integral 
equation. It  is important to notice that a small change in the metric causes a change in 
the Green function which is of the second order of smallness, as Lynden-Bell has stressed. 
Thus it will be a good approximation to use in the Green function only the background 
metric which ignores the presence of A and B. The change in the energy momentum 
tensor due to B is 

and so the change in the metric at A due to B is 

The change in the metric corresponding to a change 61: in the tetrad is 

6gab = qa&dn:ng f LEsAg). 
If we impose the gauge condition 

q,@(sn:ng - gsng) = 0 

sn;(x) = fA;;dg,b(x) 

corresponding to no rotation of the tetrad, then we obtain 

A A 

= 3 J Gz(x, xxq, dx. 
A B B  B 

(6.10) 

Th change in the action integral (6.2) due to the change (6.10) in L-.e tetrad at I caused 
by B is 

r 

6.9 = 61"q dxa 
a ~ a  A 

(6.1 1) 
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This integral is symmetric in A and B, and so gives also the change in action due to the 
change in the tetrad at B caused by A. The total action for A and B is therefore 

(6.12) 

The classical paths of mutually gravitating particles are found by requiring that the 
integral (6.12) be stationary subject to the constraints 

O(q) = 0. (6.13) 
B 

R(q) = 0, 
A 

7. Strongly interacting particles: the breakdown of the space-time continuum? 

It is legitimate to form the Green function from the background metric provided that 
the distances between the particles remain much larger than their gravitational radii 
Gm/c2. In the Schwarzschild era particles approach to within their gravitational radii, 
and the Green function is strongly affected by their mutual gravitational interaction. 
In classical theory, this simply means that the Machian integral equation is implicitly 
non-linear. The quantum theory, however, meets severe difficulties. 

Path integrals must be taken over all paths, both geodesic and non-geodesic. How- 
ever. the geodesic nature of paths is a consequence of Einstein's field equations; when 
the paths are not geodesic, the field equations have no solution, there is no metric, no 
Green function, and no action integral. 

Perhaps we could tinker with the field equations so as to force a solution, but I 
doubt whether this is the right approach. What is happening is that a single elementary 
particle causes such a large change in the geometry experienced by neighbouring 
particles that the background geometry no longer has any meaning. Then test particles 
can no longer make meaningful measurements of local geometry, and the space-time 
continuum becomes meaningless. 
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